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Abstract 

This paper discusses geometric issues arising in the study of relativistic 
cosmology, particularly as seen by their evolution in the state-space of mod­
els. Two main approaches are via space-time symmetries, and by imposing 
conditions on covariantly defined variables. At present these two approaches 
are not satisfactorily related to each other. 

l Specifying models 

A cosmological model represents the universe at a particular scale. lt is defined 

by specifying (Ehlers 1961, 1993, Ellis 1971, 1973): 

* the space-time geometry (determined by the metric), which -because of 

the requirement of compatibility with observations- must either have some ex­

panding Robertson-Walker ('RW') geometries as a regular limit (see Krasinksi 

1993), or else be demonstrated to have observational properties compatible with 

the major features of current astronomical observations of the universe; 

* the matter present and its behaviour (the stress tensor of each matter 

component, the equations governing the behaviour of each such component, and 

the interaction terms between them), which must represent physically plausible 

matter; and 

* the interaction of the geometry and matter -how matter determines the 

geometry, which in turn determines the motion of the matter. Usually we assume 

this is through the Einstein gravitational field equations ('EFE') 

(l) 
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which guarantee the conservation of total energy-momentum beca use of the con­
tracted Bianchi identities 

Gªb o Tªb o ;b = ⇒ ;b = · (2) 

The usual choices for the matter description will be 

* a fluid with given equation of state, for example a perfect fluid with 

4-velocity uª, energy density µ, and pressure p, where p = p(µ), ¡1, + p > O 

(beware of imperfect fluids, unless they have well-defined and motivated physical 

properties); 

* a mixture of fluids, with the same or different 4-velocities; 

* a set of partides represented by a kinetic theory description; 

* a scalar field </>, with a given potential V(</>) (at early times); 

* possibly an electromagnetic field described by Maxwell's equations. 

T o be useful in an explanatory role, a cosmological model must be easy to 

describe -that means they have symmetries or special properties of some kind or 

other. However we are interested in the full state space of solutions, allowing us 

to see how more realistic models are related to each other and to higher symmetry 

models. 

2 Covariant description and equations 

lt should be emphasized that the equations considered here are exact, generic, 

and describe a cosmological context. 

2.1 Variables 

2.1.1 The average 4-velocity of matter 

In a cosmological space-time (M, g) there will be a family of 'funda mental ob­

servers' moving with the average motion of matter at each paint. Their 4-velocity 

IS 

(3) 

where T is proper time measured along the fundamental worldlines. We assume 

this 4-velocity is unique: that is, there is a preferred motion of matter at each 

space-time event. At recent times this is taken to be the 4-velocity defined by 

the dipole of the Cosmic Blackbody Radiation ('CBR'): for there is precisely one 
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4-velocity which will set this dipole to zero. lt is usually assumed that this is the 

same as the average 4-velocity of matter in a suitably sized volume (Ellis 1971). 

Given uª·, there are defined unique projection tensors 

Uí," = -uªub ⇒ U'\Ub e= Uª e, Uª a = l, UabUb = 1La, (4) 

h,,b = 9ab + Ua1Lb ⇒ hªbhb e= hª e, hª a= ;J, habUb = O. (5) 

The first projects parallel to the velocity vector uª, and the second determines 

the metric properties of the instantaneous rest-space of observers moving with 

4-velocity 11,ª. There is also defined a volume element for the rest-spaces 

(6) 

where r¡"bcd is the 4-dimensional volume element (r¡ªbcd = r¡[abcdJ, r,º123 = 
l/ JI det 9ab 1-) 

Two derivatives are also defined: the time derivative · along the fundamental 

world lines, where for any tensor T 

rp,1.b T"b a 
l. cd = cd;eU , (7) 

and the orthogonal spatial derivative V, where for any tensor T 

r7 Tªb l a l b h vh W't"'7 rst l p 
V e cd = l s i t e d V p vw i e (8) 

with total projection on all free indices (note that we interchangeably use a semi­

colon and V a for the covariant derivative: Tª b;c = V cTª b). 

2.1.2 Kinematic quantities 

We split the first covariant derivative of Ua into its irreducible parts, defined by 

their symmetry properties: 

(9) 

where Wab is the vorticity tensor (wab = W[a.b], w,,bub = O), O'ab is the shear tensor 

(aab = CT(ab), O'a.bUb = o, aªa = O), 0 = u\a = 3H is the (volume) expansion 

(and H the Hubble parameter), and Üa = Ua;bub is the acceleration. 
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2.1.3 Matter tensor 

The matter stress tensor can be decomposed relative to uª in the form 

Ta.b = µuaUb + QaUb + UaQb + phab + 1íab, 

QaUª = 0, 1íab = 7íba, 1ía.bUb = 0, 1rª a.= 0 

(10) 

where µ = Tabuªub is the relativistic energy density, qª = -TabUb is the relativistic 

momentum density, which is also the energy flux relative to uª, p = ½Tªª is the 

isotropic pressure, and 7í ab is the trace-free anisotropic stresses. 

The physics of the situation is in the equations of state relating these quan­

tities, for example the commonly imposed restrictions 

(11) 

characterize a 'perfect fluid'. lf in addition we assume that p.= O, we have 

the simplest case: pressure-free matter ('dust' or 'baryonic matter'). Otherwise 

we must specify an equation of state determining p from µ and possibly other 

thermodynamic variables. Whatever these relations may be, we usually require 

that various 'energy conditions' hold: one or all of 

µ > o, µ + p > o, µ + 3p > O 

and additionally demand the speed of sound c8 obeys 

O~ e~ ~ l {:} O~ dp/d¡t ~ l. 

2.1.4 The Weyl tensor 

(12) 

The Weyl conforma! curvature tensor Cabcd is split relative to uª into 'electric' 

and 'magnetic' parts: 

(13) 

(14) 

These represent the 'free gravitational field', enabling gravitational action at a 

distance (tidal forces, gravitational waves). Together with the Ricci tensor Rab 

(determined locally at each paint by the matter tensor through the EFE (1)), 

these quantities completely represent the space-time Riemann curvature tensor 

Rabcd• 
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2.1.5 Auxiliary quantities 

lt is useful to define some associated kinematic quantities: the vorticity vector 

wª l abcd a O a O = 2,11 UbWcd => W Ua = ' W Wab = ' 

the magnitudes 

2 l ab 2 l ab 
W = -W Wab > 0 , <7 = -(T <7 ab > 0 , 2 - 2 -

and the average length scale e determined by 

. l 
l/l= -0. 

3 

(15) 

{16) 

(17) 

Further it is helpful to define particular spatial gradients orthogonal to uª, 

characterizing the inhomogeneity of space-time: 

(18) 

These satisfy the important identity 

(19) 

The latter shows that if WabJl, =j:. O in an open set then Xa =j:. O there. 

2.2 Equations 

There are three sets of equations to be considered, resulting from the EFE (1). 

2.2.1 The Ricci identity 

The first set arise from the Ricci identity for the vector field uª, i.e. 

a a R <t d 
U ;be - 1L ;cb = ·d be 1L • 

We obtain three propagation equations and three constraint equations. The 

propagation equations are, 

l. The Raychaudhuri equation 

· l 2 2 2 l 0 + 30 + 2(a - W ) - úª;a + 2K(µ + 3p) =O, {20) 
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which is the basic equation of gravitational attraction, 

2. The vorticity propagation equation 

hÍ .,.(f2we). = f2uf dWd + f,2½17fcbdUcÜb;d (21) 

showing how vorticity conservation follows if there is a perfect fluid with acceler­

ation potential, 

3. The shear propagation equation 

showing how Eab induces shear. 

The constraint equations are, 

l. The (O, v) equations 

J ab ( e ¡ d e hd + 2 e ) + ( a + a. ) • b a i Wb ;d ¿C - Ub ;d e 3 - ,b w b u b u = Kq , 

2. The vorticity divergence identity 

a J b a• 
W ;b L a= W Ua, 

3. The Hab equation 

H 2• h th ·'( b;c+ b;c) J ad = ,L(a.Wd) - a d W(t U(t 17.,)JbcU • 

2.2.2 The contracted Bianchi identities 

(23) 

(24) 

(25) 

The second set of equations arise from the contracted Bianchi identities (2). We 

obtain one propagation equation: 

(26) 

the energy conservation equation, and one constraint equation: 

(27) 

the momentum conservation equation, where for simplicity we have given only 

the perfect fluid form. 
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2.2.3 The other Bianchi identities 

lf one attains a consistent solution to the equations given so far, that is all 

one requires. However often it is useful to additionally explicitly consider the 

integrability conditions for the equations listed so far. These are the Bianchi 

identities 

Rab(cd;e] = O · 

Double contraction gives (2), already considered. Apart from these equations, the 

full Bianchi identities give two further propagation equations and two constraint 

equations, which are similar in form to Maxwell's equations. 

The propagation equations are, 

the 'E' equation, and 

hm ah t cj¡ac - ¡mt + 2Ea (tr¡m)bpqUbÚp + hmt(Jab Hab + 
+eHmt - 3Hs(mut)s - H/mwt)s = O 

(28) 

(29) 

the 'H' equation, where aga in we have given only the perfect fluid form, and we 

have defined 

The constraint equations are 

h t Eªs hd tbpq d H + 'JHt s_ !htb 
a ;cl ·• - T/ 1LblT p qcl .:> sW - 3 /L;b , (30) 

the 'div E' equation, and 

h t Hªs hd + r¡tbpqu ad E - 3Et ws - (µ + p)wt a ;d ·• b p qd s - , (31) 

the 'div H' equation. 
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2.3 The set of equations 

Altogether we have six propagation equations and six constraint equations; con­

sidered as a set of evolution equations for the covariant variables, they are a 

first-order system of equations. This set is determinate once the fluid equations 

of state are given; together they then form a complete set of equations that we 

can regard as an infinite dimensional dynamical system (the system closes up, but 

is essentially infinite dimensional because of the spatial derivatives that occur). 

Useful solutions are defined by considering appropriate restrictions on the 

kinematic quantities, Weyl tensor, or space-time geometry for a specified plausible 

matter content. In many cases these define a finite dimensional subset of the full 

system. Given such restrictions, 

(a) we need to check consistency of the constraints with the evolution equa­

tions. lt is believed that they are generally consistent, i.e. they are consistent if 

no restrictions are placed on their evolution other than implied by the evolution 

equations (this has not been proved, but is very plausible). Once we impose 

further restrictions, they may or may not be consistent. This is what we have to 

investigate. 

(b) we need to understand the dynamical evolution that results, particularly 

fixed points, attractors, etc., in terms of suitable variables, 

(c) we particularly seek to determine and characterize involutive subsets of 

the space of space-times: that is regions that are mapped into themselves by the 

dynamical evolution of the system, and so are left invariant by that evolution. 

As far as possible we aim to do this for the exact equations. We are also 

concerned with 

(d) linearization of the equations about known simple solutions, and determi­

nation of properties of the resulting linearized solutions, in particular considering 

whether they accurately represent the behaviour of the full non-linear theory in a 

neighborhood of the background solution (the issue of linearization stability). 

The idea is to relate the different models, if possible by determining the 

dynamic flows in the state space of models. 

3 Classification by symmetries 

Symmetries of a space or a space-time (generically, 'space') are transformations of 

the space into itself that leave the metric tensor and all physical and geometrical 

properties invariant. We deal here only with continuous symmetries, characterized 
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by a continuous group of transformations and associated vector fields (Eisenhart 

1933). 

3.1 Killing vectors 

A space or space-time symmetry or isometry is a transformation that drags the 

metric into itself. The generating vector field Çi is called a Killing vector (field) 

(or 'KV'), and obeys Killing's equations, 

(32) 

where Lx is the Lie derivative. By the Ricci identity for the KV, this implies the 

curvature equation: 

(33) 

and so the infinite series of further equations that follows by taking covariant 

derivatives of this one, e.g. 

(34) 

The Killing vector fields form a Lie algebra with a basis Ça (a = l, 2, .. , r) with 

components ç~ with respect to a local coordinate basis where a,b,c label the KV 

basis, i j k the coordinate components, r -:S ½n(n - l) is the dimension of the 

algebra. Any KV can be written in terms of this basis, with constant coefficients. 

Hence: if we take the commutator [ça, 6] of two of the basis KV's, this is also a 

KV, and so can be written in terms of its components relative to the Killing vector 

basis, which will be constants. We can write the constants as ec ab, obtaining 

(35) 

By the Jacobi identities for the basis vectors, these structure constants must 

satisfy 

C d Cª s[c ab] =O• (36) 

These are the integrability conditions that must be satisfied in order that the 

Lie Algebra exist in a consistent way. The transformations generated by the Lie 

Algebra form a Lie group (Eisenhart 1933, Cohn 1961) of the same dimension. 
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Arbitrariness of the basis-. we can change the basis of KV's in the usual way; 

(37) 

where the Aa,ª are constants with det(Aa,ª) =f. O, so unique inverse matrices Aª1ª 
exist. Then the structure constants transform as tensors: 

(38) 

Thus the (non)-equivalence of two Lie Algebras is not obvious, as they may be 

given in quite different bases. 

3.2 Groups of isometries 

The isometries of a space of dimension n must be a group, as the identity is 

an isometry, the inverse of an isometry is an isometry, and the composition of 

two isometries is an isometry. Continuous isometries are generated by the Lie 

Algebra of Killing Vector fields. The group structure is determined locally by the 

Lie algebra, in turn characterized by the structure constants (Cohn, 1961). The 

action of the group is characterized by the nature of its orbits in space; this is 

only partially determined by the group structure (indeed the same group can act 

as a space-time symmetry group in quite different ways). 

3.2.1 Dimensionality of groups and orbits 

Most spaces have no Killing vectors, but special spaces (with symmetries) have 

some. The group action defines orbits in the space where it acts, and the dimen­

sionality of these orbits determines the kind of symmetry that is present. 

The orbit of a paint p is the set of all points into which p can be moved 

by the action of the isometries of a space. Orbits are necessarily homogeneous 

(all physical quantities are the same at each paint). An invariant variety is a set 

of points moved into itself by the group. This will be bigger than ( or equal to) 

all orbits it contains. The orbits are necessarily invariant varieties; indeed they 

are sometimes called minimum invariant varieties, because they are the smallest 

subspaces that are always moved into themselves by all the isometries in the 

group. 

Fixed points of groups of isometries are those points which are left invariant 

by the isometries (thus the orbit of such a paint is just the paint itself). These 

are the points where all Killing vectors vanish, so the dimension of the Lie algebra 
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is zero here (however the derivatives of the Killing vectors there are non-zero; the 

Killing vectors generate isotropies about these points). 

General points are those where the dimension of the space spanned by the 

Killing vectors (that is, the dimension of the orbit through the point) takes the 

value it has almost everywhere; special points are those where it has a lower 

dimension (e.g. fixed points). Consequently the dimension of the orbits through 

special points is lower than that of orbits through general points. The dimension 

of the algebra is the same at each point of an orbit, because of the equivalence 

of the group action at all points on each orbit. 

The group is transitive on a surface S (of whatever dimension) if it can move 

any point of S into any other point of S. Orbits are the largest surfaces through 

each point on which the group is transitive; they are therefore sometimes referred 

to as surfaces of transitivity. We define their dimension as follows, and determine 

limits from the maximal possible initial data for Killing vectors: 

dim surface of transitivity = s = dim minimum invariant varieties, where in 

a space of dimension n, s :S: n . 

At each paint we can also consider the dimension of the isotropy group (the 

group of isometries leaving that point fixed), generated by all those Killing vectors 

that vanish at that point: 

dim of isotropy group = q, where q :S: 1/2n(n - l). 

The dimension r of the group of symmetries of a space of dimension n is 

r = s + q (translations plus rotations). From the above limits , O :S: r :S: 
n + (1/2)n(n - l)= {1/2)n(n + l) (the maximal number of translations and of 

rotations). This shows the Lie algebra of KVs is finite dimensional. 

Maximal dimensions: lf r= l/2n(n + l) we have a space(time) of constant 

curvature (maximal symmetry for a space of dimension n). In this case, 

Ri.ikl = f<(9ik9jl - 9il[}jk) {39) 

with /( constant; and /( necessarily is constant if this equation is true and n ~ 3. 

One can't get q= (l/2)n(n - l) - l so r-/=- (l/2)n(n + l) - l. 

A group is simply transitive if r= s <=> q= O (no redundancy: dimension­

ality of group of isometries is just sufficient to move each paint in a surface of 

transitivity into each other point). There is no continuous isotropy group. 
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A group is multiply transitive if r > s <=> q > O (there is redundancy in that 

the dimension of the group of isometries is larger than is needed to move each 

point in an orbit into each other point). There exist non-trivial isotropies. 

3.3 Classification of cosmological symmetries 

For a cosmological model, because space-time is 4-dimensional, the possibilities 

for dimension of the surface of transitivity are s = O, l, 2, 3, 4. As to isotropy, 

we assume (µ + p) =f. O; then q = 3, l, or O because uª is invariant and so 

the isotropy group at each point has to be a sub-group of the rotations acting 

orthogonally to uª (and there is no 2-d subgroup of 0(3).) The dimension q of 

the isotropy group can vary over the space (but not over an orbit): it can be 

greater at special points (e.g. an axis centre of symmetry) where the dimension s 

of the orbit is less, but r (the dimension of the total symmetry group) must stay 

the same everywhere. Thus the possibilities for isotropy at a general point are, 

a) lsotropic: q = 3, the Weyl tensor vanishes, kinematic quantities vanish 

except 8. All observations (at every point) are isotropic. This is the RW family 

of geometries; 

b) Local Rotational Symmetry ('LRS'): q= l, the Weyl tensor is type D, 

kinematic quantities are rotationally symmetric about a preferred spatial direc­

tion. All observations at every general point are rotationally symmetric about this 

direction. All metries are known in the case of dust (Ellis 1967) and a perfect 

fluid (Stewart &. Ellis, 1968, see also van Elst and Ellis 1996). 

e) Anisotropic: q= O; there are no rotational symmetries. Observations in 

each direction are different from observations in each other direction. 

Putting this together with the possibilities for the dimensions of the surfaces 

of transitivity, we have the following possibilities [See Table l]. 

4 Bianchi Universes {s= 3) 

These are the models in which there is a simply transitive group G 3 of isometries 

transitive on spacelike surfaces, so they are spatially homogeneous. There is only 
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Dim invariant variety 

s=2 s=3 s=4 

Dimension 
Isotropy 
Group 

inhomogeneous spatially 
homogeneous 

space-time 
homogeneous 

q = o 

aniso­
tropic 

q = 1 
LRS 

generic metric form known. 
Spatially self-similar, 
Abelian G_2 on 2-d 
spacelike surfaces, 

non-abelian G_2 

Bondi-Tolman 
family 

Bianchi: 
orthogonal, 
tilted 

Kantowski-Sachs, 
LRS Bianchi 

Osvath/Kerr 

Godel 

q = 3 
isotropic 

none Friedmann Einstein static 
(can't happen) 

two non-ignorable 
coordina tes 
no redshift 

Dim invariant variety 

one non-ignorable 
coordinat e 

algebraic EFE 

s=O s=1 

Inhomogeneous, No Isotropy Group 

Szekeres-Szafron, 
Stephani-Barnes, 
Oleson type N 

The real universe! 

General metric 
form independent 
of one coord; 

KV h. s .o., 
not h.s.o 

Table l: Classification of cosmological models (lt + p > O) by isotropy and 
homogeneity (see Ellis 1967). 
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one essential dynamical coordinate, and the EFE reduce to ordinary differential 

equations, because the inhomogeneous degrees of freedom have been 'frozen out'. 

They are thus quite special in geometric terms; nevertheless they form a rich set 

of models where one can study the exact dynamics of the full non-linear field 

equations. The solutions to the field equations will depend on the matter in the 

space-time. In the case of a fluid (with uniquely defined flow lines), we have two 

different kinds of models: 

Orthogonal models, with the fluid flow lines orthogonal to the surfaces of 

homogeneity (Ellis and MacCallum 1969); 

Tilted models, with the fluid flow lines not orthogonal to the surfaces of 

homogeneity; the fluid velocity vector components enter as further variables (King 

and Ellis 1973, see also Collins and Ellis 1979). 

Rotating models must be tilted, and are much more complex than non­

rotating models. 

4.1 Constructing Bianchi universes 

There are essentially three direct ways of constructing them, all based on prop­

erties of a triad of vectors e 0 that commute with the basis of Killing vectors fo. 
Thus these approaches does not directly relate to the variables introduced in the 

previous section, although they will be important in understanding the Bianchi 

models. 

The first approach (Taub 1951, Heckmann and Schücking 1962) puts all the 

time variation in the metric components: 

(40) 

where eªi(xv) are 1-forms inverse to the spatial vector triad e0 i(xµ), which have 

the same commutators Cª¡3-y (a,/3,"Y,·· = 1,2,:J) as the structure constants 

of the group of isometries and commute with the unit normal vector e0 to the 

surfaces of homogeneity; that is, e0 = e0 i ( 8 / Dxi), 1:u = (D/ fJt) obey 

(41) 

One can classify the Lie Algebra structure (following Schücking) by defining 

(42) 
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where n°'(J = n(a(J), ª-v = C-Y o:-v· Then the Jacobí ldentities (36) for these vectors 

are 

n°'(J ll(J = Ü 

We define two major classes of structure constants ( and so Lie Algebras): 

Class A: ªª = O, 

Class B: ª°' i= O. 

(43) 

One can diagonalise na(J in both cases by suitable choice of basis, and choose 

ªª in the 1-direction. Most of the non-zero constants (represented as constant 

components of n°'fl and aa) can be normalised to ±1 by change of basis (37), the 

structure constants transforming according to (38) (and so n°'(J and ao: transform­

ing as tensors). The EFE (l) become ordinary differential equations for ,o:{J(t). 

We deal directly with these equations, without introducing the Weyl tensor com­

ponents as additional variables (so we do not explicitly consider the full set of 

Bianchi identities in this approach; rather they are identities that will automati­

cally be satisfied once the EFE are satisfied). 

The second approach (Ellis and MacCallum 1969) uses an orthonormal tetrad, 

so the metric components 9ab are constants, putting all the time variation in the 

commutators of the basis vectors. In this case we have an orthonormal basis ea 

(a= O, l, 2, 3) such that 

(44) 

The spatial commutator functions 1 °' (3-y(t), which can be represented analogously 

to (47) above by a time-dependent matrix n°'fl(t) and vector aa(t), are equivalent 

to the structure constants Cª fJ-v of the symmetry group at each point (i.e. they 

can be brought to the canonical forms of the Cª fJ-v at that any by a suitable 

change of basis; however the transformation to do so is different at each point 

and at each time). The commutators ,ªbc(t), together with the matter variables, 

are then treated as the dynamical variables. The EFE (l) are first order equations 

for these quantities, supplemented by the Jacobí identities for the basis vectors 

which are also first order equations for the commutators. 

The third approach is based on the automorphism group of the symmetry 

group. We will not consider it further here. 
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5 Oynamical systems approach 

The most illuminating dynamical systems description of Bianchi models is based 

on the use of orthonormal tetrads, and is examined in detail in a forthcoming book 

(Wainwright and Ellis 1996). The variables used are essentially the commutator 

coefficients mentioned above, but rescaled by a common time dependent factor1 . 

5.1 The reduced differential equations 

The basic idea (Collins 1971, Wainwright 1988) is to write the Einstein field 

equations in a way that enables one to study the evolution of the various physical 

and geometrical quantities relative to the overa/1 ,:ate of expansion of the universe, 

as described by the rate of expansion scalar 0 = ufa.• or equivalently the Hubble 

variable H: 

H - l(J -3· (45) 

We consider here non-tilted fluids, where the 4-velocity u is orthogonal to the 

group orbits and t is a time variable which is constant on the group orbits, so 

that u = g1• Let { e 0} be a group invariant orthonormal fra me, with e 0 = u. We 

use the commutation functions 'Yib associated with the fra me { e 0 }: as the basic 

gravitational field variables. The 'Yib are constant on the group orbits and can 

thus be regarded as a function of the time variable t: 'Y~b = -y~;b(t). Since e 0 is 

normal to the group orbits, the non-zero commutation functions are 

(46) 

where H(t), a0 13(t) are the expansion and shear of the normal flow lines, !10 (t) is 

the rate of rotation of the spatial tetrad vectors relative to a parallel propagated 

basis along the fluid flow lines, and n0 13(t), a0 (t) represent the purely spatial 

commutators through the equation 

(47) 

( cf. ( 42)). At this stage the remaining freedom in the choice of orthonormal 

frame needs to be eliminated by specifying the variables !10 implicitly or explicitly 

(for example by specifying them as functions of the a 0 13). This also simplifies 

the other quantities (for example choice of a shear eigenframe will result in the 

1The following is adapted from notes by J. Wainwright 
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tensor <Trrf3 being represented by two diagonal terms). This leads to a reduced set 

of variables, consisting of H and the remaining commutation functions, which we 

denote symbolically by 

(48) 

The physical state of the model is thus described by the vector (H, x). The 

details of this reduction differ for the class A and B models, and in the latter case 

there is an algebraic constraint of the form 

g(x) =O, (49) 

where g is a homogeneous polynomial. 

The idea is now to normalize x with the Hubble variable H. We denote the 

resulting variables by a vector y E Rn, and write: 

(50) 

These new variables are dimensionless, and will be referred to as expansion­

normalized variables. lt is clear that each dimensionless state y determines a 

1-parameter family of physical states (x, H). The evolution equations for the 

"'t ab lead to evolution equations for H and x and hence for y. In deriving the 

evolution equations for y from those for x, the deceleration parameter q plays an 

important role. The Hubble variable H can be used to define a scale factor f, 

according to 

i 
H= i' (51) 

where · denotes differentiation with respect to t. The deceleration parameter is 

then defined by 

(52) 

In order that the evolution equations define a flow, it is necessary, in conjunc­

tion with the rescaling (50) to introduce a dimensionless time variable r according 

to 

(53) 

where f 0 is the value of the scale factor at some arbitrary reference time. Since 

e assumes values O < f < +oo in an ever-expanding model, r assumes all real 
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values, with T ➔ -oo at the initial singularity and T ➔ +oo at late times. lt 

follows from equations (51) and (53) that 

dt l 
dr - H' 

and the evolution equation (52) for H can be written 

dH - = -(l+q)H. 
dr 

(54) 

(55) 

Since the right hand side of the evolution equations for the í'~b are homoge­

neous of degree 2 in the ,e ab the change (54) of the time variable results in H 
canceling out of the evolution equation for y, yielding an autonomous DE: 

dy 
dr = f(y), y E Rn. (56) 

The constraint g(x) = O translates into a constraint 

g(y) = o, (57) 

which is preserved by the DE. The functions f : Rn ➔ Rn and g : Rn ➔ R 
are polynomial functions in y. An essential feature of this process is that the 

evolution equation for H, namely (55), decouples from the remaining equations 

(56) and (57). In other words, the DE (56) describes the evolution of the non­

tilted Bianchi cosmologies, the transformation (5.5) essentially scaling away the 

effects of the overall expansion. An important consequence is that the new 

variables are bounded near the initial singularity. 

5.2 Cosmological dynamical systems 

5.2.1 Invariant sets and limit sets 

The first step in the analysis is to formulate the field equations, using expansion­

normalized variables, as a DE (56) in Rn, possibly subject to a constraint (57). 

Since T assumes all real values (for models which expand indefinitely), the so­

lutions of (56) are defined for all T and hence define a flow { <Pr} on Rn. The 

evolution of the cosmological models can thus be analyzed by studying the orbits 

of this flow in the physical regien of state space, which is a subset of Rn defined 

by the requirement that the energy density be non-negative, i.e. 

(58) 
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where the density parameter n is a dimensionless measure of the matter density µ. 

The vacuum boundary, defined by U(y) = O, describes the evolution of vac­

uum Bianchi models, and is an invariant set which plays an important role in the 

qualitative analysis because vacuum models can be asymptotic states for perfect 

fluid models near the big-bang or at late times. There are other invariant sets 

which are also specified by simple restrictions on y which play a special role: 

the subsets representing each Bianchi type, and the subsets representing higher 

symmetry models, specifically the FL models and the LRS Bianchi models. 

lt is desirable that the dimensionless state space D in R11 is a compact set. 

In this case each orbit will have a non-empty a-limit set and w-limit set, and 

hence there will exist a past attractor and a future attractor in state space. When 

using expansion-normalized variables, compactness of the state space has a direct 

physical meaning for ever-expanding models: if the state space is compact then 

at the big-bang no physical or geometrical quantity diverges more rapidly than 

the appropriate power of H, and at late times no such quantity tends to zero 

less rapidly than the appropriate power of H. This will happen for many models; 

however the state space for Bianchi Vll0 and VIII models is non-compact. This 

lack of compactness manifests itself in the behaviour of the Weyl tensor at late 

times. 

5.2.2 Equilibrium points and self-similar cosmologies 

Each ordinary orbit in the dimensionless state space corresponds to a one-parameter 

family of physical universes, which are conformally related by a constant rescal­

ing of the metric. On the other hand, for an equilibrium point y* of the DE 

(56) (which satisfies f(y*) = O), the deceleration parameter q is a constant, i.e. 

q(y*) = q*, and we find 

In this case, however, the parameter Ho is no longer essential, since it can be set 

to unity by a translation of r, r~ r+ constant; then (54) implies that 

l 
Ht=--, 

l+ q* 
(59) 

so that by (48) and (50) the commutation functions are of the form (constant) 

x t-•. lt follows that the resulting cosmological model is self-similar. Thus, to 

each equilibrium point of the DE (56) there corresponds a unique self-similar 

cosmological model. In such a model the physical states at different times differ 
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only by an overall change in the length scale. Such models are expanding, but 

in such a way that their dimensionless state does not change. They include the 

flat FL model (Q= l) and the Milne model (Q= O). All vacuum and non-tilted 

perfect fluid self-similar Bianchi solutions have been given by Hsu and Wainwright 

(1986). 

The equilibrium points determine the asymptotic behaviour of other more 

general models. lf the ll'-limit set of a paint y is an equilibrium paint y*, then 

the orbit through y approaches y* as r -+ -oo. The physical interpretation is 

that the self-similar model which corresponds to y* approximates the dynamics 

of the model with initial state y, as r -+ -oo. This model is asymptotically 
self-simi/ar into the past. A similar interpretation holds if the w-limit set is an 

equilibrium paint. The term asymptotically selfsimilar without a qualifier means 

that the model has this property into the past and into the future. In this case 

the orbit that describes the model will be heteroclinic (i.e. joins two equilibrium 

points). 

Equilibrium points also influence the intermediate evolution by determining 

finite heteroclinic sequences which join the past attractor to the future attractor. 

The intermediate equilibrium points in the sequence determine quasi-equilibrium 

epochs, which may be important from an observational paint of view. In this case 

an anisotropic model can spend an arbitrarily large time in an c-neighbourhood 

arbitrarily dose to a FL equilibrium paint; and hence can for practica! purposes 

by observationally indistinguishable from it, even though its very early and very 

late behaviour will both be completely different. 

Many phase planes can be constructed explicitly. The reader is referred to 

Wainright and Ellis (1996) for a comprehensive presentation and survey of results 

attained so far. 

5.3 Relation to full state space 

The symmetric spaces, such as the Bianchi universes, form finite dimensional 

subsets of the full dynamical system, defining involutive subsets of the full state 

space of solutions. There are also involutive subspaces that are infinite dimen­

sional, some of which are discussed in the next section. The challenge is to 

characterise them and to relate them to the finite dimensional subspaces, such 

as those associated with Bianchi models. 
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6 Other involutive subspaces of state space 

We look at some of these infinite dimensional subspaces here, and then briefly 

comment on the relation to the finite dimensional subspaces in the following 

section. 

6.1 Pressure-free matter ('dust') 

A particularly useful dynamical restriction is 

so the matter ( often described as 'baryonic') is represented only by its 4-velocity 

uª and its density /L > O. 

In this case momentum conservation shows that Üa = O: the matter moves 

geodesically (as expected from the equivalence principie), and all equations sim­

plify considerably. This is the case of pure gravitation: it separates out the 

(non-linear) gravitational effects from all the fluid dynamic effects. lt is a very 

large involutive subspace. 

6.2 lrrotational flow 

lf we have a barotropic perfect fluid: 

( ) acd • O qq = 11" a.b = O, P = P µ => 1/ 1Lc;d = 

then w = O is involutive, i.e. 

follows from the vorticity conservation equations (and this is true also in the 

special case p = O), see (Ehlers 1961, 1993; Ellis 1973). In such flows, 

l. The fluid flow is hypersurface orthogonal, as there exists a cosmic time 

function t such that ?La= -g(xb)t,a, 
2. The metric of the orthogonal 3-spaces is hab, 

3. The Ricci tensor of these 3-spaces is given by 

3 
Rab h/hb9 [ü(f;g) -f-3 (f3 a¡9 ) ·] + Íta1Lb + 

+ ~(-~02 + a2 - ~ü". +A+ KJL) + 3 3 2 ,e 

(60) 

K11"ab 
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and their Ricci scalar by 

(61) 

which is a generalised Friedmann equation. These equations fully determine 

the curvature tensor 3 Ra.bcd of the orthogonal 3-spaces. Provided the matter is 

baryonic perfect fluid, this is an involutive subspace of large dimension. 

6.3 lrrotational dust 

Dust is a special case of a baryonic fluid, so the dust irrotational spaces form 

an involutive subspace which is the intersection of the two. Considering these 

solutions, p = O ⇒ Üa = O and wª = O. Then the non-trivial (exact) evolution 

equations of Section 1.2 are, 

f1, + µ0 = O, (62) 

where Jmt is 'curi H' and ¡mt is 'curi E'. 

The constraint equations are 

hªb(-<Tb \dh~ + ~0,b) = 0, (67) 

H _ h th s b;c) J 
ad - - a d <T(t T/s)fbcU , (68) 

h t Eªs hd tbpq d H _ lXt 
a ;d s - T/ 1Lb<T p qcl - J , (69) 

h t Hª·' hd + r¡tbpqu ,..d E - O a ;d s bv p .Jqd - , {70) 

In general these equations are consistent {Maartens et al. 1997). 
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6.4 FL universes (RW geometry) 

A particularly important involutive subspace of the irrotational dust space-times 

is that of the Friedmann-Lemaitre ('FL') universes, based on the everywhere­

isotropic Robertson-Walker ('RW') geometry. lt is characterized by a perfect 

fluid matter tensor and the conditions 

Wab = O'ab =o= uª ⇒ Eab = Hab = o, Xa= Ya = Za =o' 

the first conditions stating these solutions are also shear-free and hence are locally 

isotropic, the second that they are conformally flat, and the third that they are 

spatially homogeneous. lt follows then that: 

l. 3 Rab is isotropic, so the 3-spaces are 3-spaces of constant curvature; 

2. The remaining non-trivial equations are the energy equation (26), the 

Raychaudhuri equation (20) which now takes the form 

· l 2 l 0+30 +2K(µ+3p)=O, (71) 

and the Friedmann equation that follows from (61): 

2 6k 3R = --82 + 2Kµ = - ' 3 f_2 
(72) 

where k is a constant. Any two of these equations imply the third if (J-=/- O (the 

latter equation being a first integral of the other two). 

3. From these equations, as well as finding simple exact solutions one can 

determine evolutionary phase planes for this family of models, see Refsdal and 

Stabell (1966), Madsen and Ellis (1988), and Ehlers and Rindler (1989). 

6.5 The Shear-Free case 

lf p =O::::} Úa = O and O'ab = O in an open set U then all equation simplify in U. 
In particular the vorticity equation becomes 

(73) 

and then (on using the energy conservation equation) we can integrate the Ray­

chaudhuri equation to get a 'Friedmann equation' 

• 2 2f22 M 
3(f) +---=E f2 f_ 

(74) 
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where M, E are constants. This appears to allow the avoidance of an initial 

singularity, as the vorticity term can dominate at early times! BUT putting O'ab = O 

converts the Ó'ab equation (22) into a new constraint: 

(75) 

This has to be consistent with the time evolution of Eub, which now takes the 

form 

(76) 

We must now systematically check consistency. 

The Procedure is as follows: take the time derivatives of all new constraints 

that arise from our assumptions (here, (75)). lf necessary, commute space and 

time derivatives in the resulting equations, using the Ricci identities to do so. 

Substitute for the time evolution terms from the evolution equations, and use 

Leibniz's rule to expand out the spatial derivatives. Collect terms, obtaining 

simplified equations without any time derivatives. The result is either a new 

constraint equation that must be satisfied if the original constraint is to be pre­

served in time, or an identity (O = O). CONTINUE until all the constraints that 

arise in this way are identically conserved by the time evolution, or we get an 

inconsistency. 

The result of this procedure (Ellis 1967) is that in order to be consistent, 

shear-free dust solutions cannot expand and rotate; in U, 

we = o ⇒ ·if e i= o, then W = o. (77) 

Thus the only expanding dust solutions with vanishing shear are the FL solutions. 

Hence this does not offer a raute to singularity avoidance (for consistency, the 

constant n in equation (74) has to vanish, so the vorticity term cannot dominate 

the early expansion.) The involutive subspace of irrotational dust space-times 

defined by this condition is just the FL subspace. 

6.6 Silent universes: 11,,b = O. 

The evolution equations for irrotational dust, in general partial differential equa­

tions, become ordinary differential equations if ¡mt = O = Jmt: with these re­

strictions, there are no spatial derivatives in these equations. Hence we then have 

what has been called a 'silent universe' -provided the constraints are satisfied 
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initially, and are conserved by the evolution equations, each world line evolves in­

dependently of each other (this evolution being governed by o.d.e's). In this case 

the infinite dimensional dynamical system decomposes into the direct product of 

finite dimensional dynamical systems along each world line. 

The simplest case is when Hab = O. Then the equation (66) becomes a new 

constraint: 

/mt _ h (mr¡t)rsdU Eª _ O 
- a r s¡d - · (78) 

Is this constraint ( and the other constraints) preserved along the flow lines? No 

they are not, as has been shown by Bonilla et al {1996) and by van Elst et 

al (1996)2. The proof is based on analysis using a tetrad that simultaneously 

diagonalizes O'ab and Eab (possible because of (70)). lt is not known what the 

full set of consistent solutions is, that ferms an involutive subset of the exact 

field equations; it includes Bianchi l universes and the Szekeres family of models. 

There may be no others. 

6.7 div H= O 

Now consider the case of solutions with div H = O. Equation (70) then shows 

d . H O tbpq d E O 
W = ⇒ r¡ UbO' p qd = , (79) 

so Eab and O'ab can be simultaneously diagonalised. This reduces the number of 

variables drastically. We now need to check the consistency of the new condition, 

that is, to examine the consequences of the equation (div H)"= O, using the 

same procedure as before. A consistency analysis (Maartens et al 1997) 3 shows 

this is consistent, even if H f. O. This is an exact result following from the full 

field equations, and shows consistency of these equations with the usual results 

of linearised theory for gravitational waves. Hence this does form an involutive 

subset of the full space of solutions. 

These examples show how examination of the integrability conditions of the 

exact field equations starts to delineate allowed subspaces in the space of cosmo­

logical space-times. There is much to be done here, for example extending the 

above analyses to the case where Wab f. O, or top= p(µ). 

2Correcting previous incorrect claims by Lesame et al 
3 Correcting Lesame et al 1996, which is erroneous because of a sign error in the equations 

used. 
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7 Problems and lssues 

A lot of progress has been made in recent times, but many issues remain outstand­

ing. So far, the covariant approach has not been properly tied in to the exact 

solutions characterized by symmetries. That is, the two main sections above 

have not been related properly to each other. This is an unsolved problem at 

the present time - the Locally Rotationally Symmetric case has been solved (van 

Elst and Ellis 1996) and some partial results are known in other cases. But we 

do not have a simple characterization of the symmetric subspaces -for example 

the Bianchi universes- in terms of the covariant variables. 

The broader aim is an understanding of the evolution of models in the space of 

space-times, characterizing invariant sets, fixed points, saddle points, attractors, 

etc. As seen above, we can find these features in some phase planes that are 

sections of the full space of space-times, corresponding to families of higher­

symmetry solutions or to kinematic restrictions; they then determine the nature 

of the evolutionary curves in those families (Wainwright and Ellis 1996). The 

problem is to extend this understanding to broader classes of models, and the to 

relation between the covariant and symmetry approaches. 

Other issues that have not yet been resolved are: 

(l) finding a suitable measure of probability in the full space of space-times, 

and in its involutive subspaces. The requirement is a natural measure that is 

plausible. Progress has been made in the FL sub-case, but even here is not 

definitive. 

(2) Relating descriptions of the same space-time on different scales of descrip­

tion. This leads to the issue of averaging and the resulting effective (polarization) 

contributions to the stress tensor, arising because averaging does not commute 

with calculating the field equations for a given metric. 

(3) Related to this is the question of definition of entropy for gravitating sys­

tems in general, and cosmological models in particular. This may be expected 

to imply a coarse-graining in general, and so is strongly related to the averaging 

question. lt is an important issue in terms of its relation to the spontaneous 

formation of structure in the early universe. 
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